Ensembles of Probabilistic Principal Surfaces and Competitive Evolution on Data: two different approaches to data classification
نویسندگان
چکیده
Probabilistic Principal Surfaces (PPS) offer very powerful visualization and classification capabilities and overcome most of the shortcomings of other neural tools such as SOM, GTM, etc. More specifically PPS build a probability density function of a given data set of patterns lying in a D-dimensional space (with D >> 3) which can be expressed in terms of a limited number of latent variables laying in a Q-dimensional space (Q is usually 2-3) which can be used to visualize the data in the latent space. PPS may also be arranged in ensembles to tackle very complex classification tasks. Competitive Evolution on Data (CED) is instead an evolutionary system in which the possible solutions (cluster centroids) compete to conquer the largest possible number of resources (data) and thus partition the input data set in clusters. We discuss the application of Spherical–PPS to two data sets coming, respectively, from astronomy (Great Observatory Origins Deep Survey) and from genetics (microarray data from yeast genoma) and of CED to the genetics data only.
منابع مشابه
Efficient Data Mining with Evolutionary Algorithms for Cloud Computing Application
With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملExtension of Cube Attack with Probabilistic Equations and its Application on Cryptanalysis of KATAN Cipher
Cube Attack is a successful case of Algebraic Attack. Cube Attack consists of two phases, linear equation extraction and solving the extracted equation system. Due to the high complexity of equation extraction phase in finding linear equations, we can extract nonlinear ones that could be approximated to linear equations with high probability. The probabilistic equations could be considered as l...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کامل